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Abstract—In distributed fusion estimation, directly transmit-
ting local estimates to the fusion center may cause a privacy
leakage concerning exogenous inputs. Thus, it is crucial to protect
exogenous inputs against full eavesdropping while achieving dis-
tributed fusion estimation. To address this issue, a noise injection
strategy is provided by injecting mutually independent noises into
the local estimates transmitted to the fusion center. To determine
the covariance matrices of the injected noises, a constrained
minimization problem is constructed by minimizing the sum
of mean square errors of the local estimates while ensuring
(ϵ, δ)-differential privacy. Suffering from the non-convexity of the
minimization problem, an approach of relaxation is proposed,
which efficiently solves the minimization problem without sac-
rificing differential privacy level. Then, a differentially private
distributed fusion estimation algorithm based on the covariance
intersection approach is developed. Further, by introducing a
feedback mechanism, the fusion estimation accuracy is enhanced
on the premise of the same (ϵ, δ)-differential privacy. Finally, an
illustrative example is provided to demonstrate the effectiveness
of the proposed algorithms, and the trade-off between privacy
level and estimation accuracy.

Index Terms—Differential privacy, distributed fusion estima-
tion, constrained optimization, exogenous inputs, full eavesdrop-
ping

I. INTRODUCTION

The real-time state estimation problem aims at estimating
system state from noisy measurements and plays an important
role in many areas, such as target tracking and aerospace
engineering [1]–[3]. In contrast to single-sensor state estima-
tion, multi-sensor fusion estimation employing multi-source
data improves accuracy and robustness simultaneously, thereby
attracting significant attention in recent years [2]–[5]. There
are two basic networks for multi-sensor fusion estimation,
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i.e., centralized and distributed networks. Compared with the
former, the latter stands out due to better robustness and sys-
tem feasibility. However, distributed networks are susceptible
to many different types of attacks, such as denial-of-service
attacks [6] and false data injection attacks [7]. To defend
against these attacks, many meaningful works about distributed
fusion estimation have been proposed (see, e.g., [8]–[14]).
In these studies, the attackers should acquire some privacy
information by eavesdropping before launching a strategic
attack [15]. Under this case, it is essential to protect privacy
information against eavesdropping at its source. Thus, it is
of great significance to study privacy preservation problem
against eavesdropping in distributed fusion estimation.

To defend against eavesdropping, some distributed fusion
estimation approaches have been developed in [2], [3], [15].
Specifically, encryption-based distributed fusion estimation ap-
proaches are presented in [2], [15]. In [3], a differentially pri-
vate distributed fusion estimation algorithm is provided, where
the publicly released estimates defined by fusion estimates
averaged over time are protected. Attributed to its powerful
performance and rigorous mathematical models, differential
privacy stands out from its competitors and is studied in a wide
range of fields, such as federated learning [16], consensus [17],
optimization [18], [19], game theory [20], [21] and control
theory [22]. Particularly in state estimation fields, differentially
private filtering has been firstly discussed in [23]. In addition to
measurements and state estimates, exogenous inputs may also
contain private information, as demonstrated in applications
such as smart grids [24] and building automation [25]–[27].
Therefore, protecting exogenous inputs is critically important,
yet it introduces distinct theoretical challenges, including
establishing privacy condition, designing optimal noise, and
co-optimizing privacy and estimation accuracy. To our best
knowledge, research on protecting exogenous inputs in fusion
estimation is still lacking.

Motivated by the above analysis, in this paper, we study the
differentially private distributed fusion estimation to protect
the exogenous inputs against full eavesdropping. To ensure
differential privacy of these exogenous inputs, we have to
sacrifice some fusion estimation accuracy due to the noise
injection strategy adopted at the sensor side. Particularly, we
aim at minimizing the sum of mean square errors (MSEs) of
local estimates and ensuring (ϵ, δ)-differential privacy simul-
taneously, which is the main purpose of this paper. Unfor-
tunately, there exist some substantial difficulties in achieving
this goal: i) To ensure (ϵ, δ)-differential privacy, a joint con-
sideration of all the local sensors is necessary; under this case,
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minimizing the sum of MSEs of local estimates is challenging,
especially when the correlation among the measurement noises
of local sensors is unknown. ii) Computational efficiency
is critically important in real-time state estimation, but the
minimization problem is non-convex with the optimization
variables being matrices, greatly increasing the difficulty of
solving it efficiently. iii) Accurate fusion can foster optimal
resource utilization and stability in estimation algorithms;
thus, is it possible to enhance fusion estimation accuracy
while ensuring (ϵ, δ)-differential privacy? These difficulties are
properly solved in this paper, and the main contributions are
summarized as follows:
• We achieve distributed fusion estimation while protect-

ing exogenous inputs against full eavesdropping. Unlike
common differentially private approaches that often inject
simple isotropic or scalar noise (see, e.g., [3], [16]–[21],
[23]), we propose an optimized anisotropic noise injec-
tion strategy tailored to system uncertainties. This strategy
introduces less noise along directions where the state is
already uncertain, thereby improving estimation accuracy
without compromising privacy. The noise covariance matrix
is obtained by solving a constrained minimization problem
that minimizes the sum of MSEs of local estimates while
ensuring (ϵ, δ)-differential privacy. Furthermore, we solve
this problem efficiently via a semi-definite programming
(SDP) relaxation and establish an explicit upper bound on
the relaxation gap. The proposed SDP not only preserves
the privacy guarantee but also meets real-time computation
requirements.

• We develop two differentially private distributed fusion
estimation algorithms based on covariance intersection, bal-
ancing low-complexity and high-accuracy requirements. For
the first algorithm, we provide an analytical characterization
of the estimation accuracy loss, which rigorously quantifies
the privacy-accuracy trade-off. For the second algorithm,
we incorporate a feedback mechanism that is theoretically
guaranteed to enhance estimation accuracy without compro-
mising the (ϵ, δ)-differential privacy, but at the expense of
increased computational complexity, thereby establishing a
complexity-accuracy trade-off.
Notations. Scalars, vectors and matrices are denoted by

lowercase letters, bold lowercase letters, and bold capital
letters, respectively. Scalar 0, zero vector, and zero matrix are
all denoted by 0 for simplicity. All the vectors are column
vectors. The set of all n-dimensional real vectors and all n×m
real matrices are denoted by Rn and Rn×m, respectively. For
a vector a, ∥a∥ denotes its Euclidean norm, further, ∥a∥A de-
notes its Euclidean norm weighted with A > 0, i.e.,

√
aTAa.

diag(a) represents the diagonal matrix with a on the principal
diagonal. In particular, 1 represents the vector with all entries
one. For a square matrix A, A ≥ 0 (or A > 0) means
that A is positive semi-definite (or positive definite). tr(A)
represents the trace of A. λmin(A) denotes the minimum
eigenvalue of A. The block-diag(A0,A1, . . . ,An) represents
the block diagonal matrix with matrices A0,A1, . . . ,An on
the principal diagonal. A⊗B represents the Kronecker product
operation between matrices A and B. In represents the n×n
identity matrix. E[·] is the mathematical expectation operator.

II. PROBLEM FORMULATION

Consider a distributed multi-sensor network system con-
sisting of M local sensors and a fusion center. For Node
i = 1, 2, . . . ,M , the following time-varying dynamic system
is addressed:

xk+1 = Akxk +Bkdk +wk,

yi,k = Ci,kxk + vi,k,
(1)

where k = 0, 1, 2, . . . is time index, xk ∈ Rnx , dk ∈ Rnd ,
and yi,k ∈ Rnyi are the state, the exogenous input, and
the i-th node’s measurement, respectively, Ak ∈ Rnx×nx ,
Bk ∈ Rnx×nd , and Ci,k ∈ Rnyi

×nx are known matrices,
{wk} and {vi,k} are zero-mean Gaussian white noise se-
quences with covariance matrices Qk and Ri,k, respectively,
and dk is regarded as deterministic but unknown [28], [29].
The initial state is independent of the noise sequences. All
system parameters, including Ak, Bk, Ck, Qk and Ri,k, are
available to the fusion center. The correlations between the
measurement noises of different sensors are typically unknown
due to factors such as physical separation and unsynchronized
clocks (see, e.g., [1], [30]).

Assumption 1: rank(Ci,kBk−1) = rank(Bk−1) = nd, for
all k.

Assumption 2: (Ak,Ci,k) is detectable, for all k.
Remark 1: Assumptions 1 and 2 are standard in the literature

(see, e.g., [28], [29]). Assumption 1 ensures nx ≥ nd and
nyi

≥ nd, while Assumption 2 guarantees a bounded error
covariance in Kalman filtering.

Distributed fusion estimation aims to produce a fusion
estimate and its associated error covariance matrix at each
time step k, through the fusion of all local estimates and their
error covariance matrices.

At the sensor side, the unbiased minimum-variance state
estimation proposed in [28] is adopted, which is optimal in
the minimum mean square error (MSE) sense and comprises
two steps. For Node i = 1, 2, . . . ,M , let x̂i,k|k be the estimate
of xk using the measurements yi,0,yi,1, . . . ,yi,k, and Pi,k|k
be the associated error covariance matrix.

1) Prediction step. The predicted state estimate, denoted by
x̂i,k|k−1, and its error covariance matrix, denoted by Pi,k|k−1,
are calculated as follows:

x̂i,k|k−1 = Ak−1x̂i,k−1|k−1, (2)

Pi,k|k−1 = Ak−1Pi,k−1|k−1A
T
k−1 +Qk−1. (3)

2) Update step. Once receiving the measurement yi,k,
the unbiased minimum-variance state estimate and its error
covariance matrix are given as

x̂i,k|k = x̂i,k|k−1 +Gi,k(yi,k −Ci,kx̂i,k|k−1), (4)

Pi,k|k = Pi,k|k−1 −Pi,k|k−1C
T
i,kF

−1
i,kCi,kPi,k|k−1

+ (Bk−1 −Pi,k|k−1C
T
i,kF

−1
i,kCi,kBk−1)

· (BT
k−1C

T
i,kF

−1
i,kCi,kBk−1)

−1

· (Bk−1 −Pi,k|k−1C
T
i,kF

−1
i,kCi,kBk−1)

T, (5)

where Gi,k = Pi,k|k−1C
T
i,kF

−1
i,k +(Bk−1−Pi,k|k−1C

T
i,kF

−1
i,k

Ci,kBk−1)(B
T
k−1C

T
i,kF

−1
i,kCi,kBk−1)

−1BT
k−1C

T
i,kF

−1
i,k , and

Fi,k = Ci,kPi,k|k−1C
T
i,k +Ri,k.
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Remark 2: Note that the first term of (5), Pi,k|k−1 −
Pi,k|k−1C

T
i,kF

−1
i,kCi,kPi,k|k−1, is the standard Kalman filter

update, while the second is a correction that accounts for the
uncertainty induced by dk−1, thereby ensuring the unbiased-
ness of the state estimate (4).

At the fusion center side, after receiving all the local state
estimates and error covariance matrices, the fusion estimate,
denoted by x̂umv

k|k , and its error covariance matrix, denoted by
Pumv

k|k , are derived by employing the approach of covariance
intersection [30]:(
Pumv

k|k
)−1

x̂umv
k|k=

M∑
i=1

wiP
−1
i,k|kx̂i,k|k,

(
Pumv

k|k
)−1

=

M∑
i=1

wiP
−1
i,k|k,

where the weight vector w = [w1, w2, . . . , wM ]T satisfies
wi ≥ 0 and wT1 = 1.

Remark 3: Here, the term “distributed” is standard and refers
to the well-established “distributed sensing with centralized
fusion” architecture (see, e.g., [1]). This term applies because
the computational load of processing raw measurements is
distributed among the individual sensors, in contrast to a
fully centralized architecture where all raw sensor data is sent
directly to a single processing unit.

For the system (1), there may be an eavesdropper, who is ex-
ternal to the system and trying to infer the private information.
We assume that the eavesdropper has the following capability,
which is referred to as the full eavesdropping hereinafter.

Definition 1 (Full eavesdropping): The full eavesdropping
is a form of passive wiretapping that silently monitors com-
munication channels without modification, and can obtain the
same information as the fusion center, which can be classified
into two categories: (a) system parameters, including Ak, Bk,
Ck, Qk and Ri,k; (b) real-time transmitted data.

Fusion center

Sensor 1 Sensor M


1, |k kx 

, |M k kx

Sensor i 


, |i k kx

1, |k kP , |i k kP , |M k kP

... ...

Fig. 1: Architecture of the problem: Each sensor i =
1, 2, . . . ,M completes local estimation task independently, and
transmits x̂i,k|k and Pi,k|k to the fusion center for the fusion
estimation task, where all the local estimates {x̂i,k|k}Mi=1 and
their error covariance matrices {Pi,k|k}Mi=1 are available to the
full eavesdropper.

The architecture of the problem is depicted in Fig. 1. Note
that there is no direct information transmission among the local
sensors. In the system (1), the exogenous input dk−1 at time
step k contains private information and should be protected
against full eavesdropping.

To demonstrate the necessity of protecting dk−1 at time step
k, the following two practical examples are representative:
• Smart grids (see, e.g., [24]): A household’s current power

consumption (dk−1) reveals real-time behaviors like appli-
ance usage and occupancy, making its protection a core
challenge in smart grids.

• Building automation (see, e.g., [25]–[27]): A building’s
current occupancy (dk−1) represents critical private infor-
mation, making its protection a primary objective in building
automation.
Remark 4: Our focus on protecting the latest exogenous

input, dk−1, at each time step k stems from the high sensi-
tivity of real-time data, such as a household’s current power
consumption [24] or a building’s current occupancy [26], [27],
which is of primary interest to an eavesdropper.

Based on the above analysis, we aim to achieve distributed
fusion estimation for the system (1), while protecting dk−1

against full eavesdropping at each time step k. Under privacy
consideration, the unbiased minimum-variance state estimate
given by (4) cannot be transmitted to the fusion center directly
as it may cause a privacy leakage (see Example 1 in [27]).
Therefore, a tailored privacy-preserving local state estimation
needs to be designed.

Remark 5: Note that the Pi,k|k given by (5) does not contain
any information about dk−1. Therefore, to protect dk−1, we
just need to modify the x̂i,k|k given by (4).

III. PRIVACY-PRESERVING LOCAL STATE ESTIMATION

In this section, we design the privacy-preserving local state
estimation based on a noise injection strategy. Particularly,
we aim to minimize the sum of MSEs of local estimates
while protecting dk−1 against full eavesdropping. To this
end, it is not sufficient to consider privacy level for a single
sensor; instead, a joint consideration of all the local sensors
is necessary. By augmenting all the local estimates together,
denoted by x̂k|k = [x̂T

1,k|k, x̂
T
2,k|k, . . . , x̂

T
M,k|k]

T, we know that
x̂k|k represents all the transmitted state estimates available to
the full eavesdropper at time step k.

Then, we modify x̂k|k by injecting an independent noise:
x̄k|k = x̂k|k +ωk, where ωk ∼ N (0,Σk) and the covariance
matrix Σk need to be determined. Furthermore, to ensure that
the local sensors can inject noise independently of each other,
we limit the sought-after Σk into the block-diagonal form:
Σk = block-diag(Σ1,k,Σ2,k, . . . ,ΣM,k). Note that the larger
Σk, the higher privacy level, but the lower local and fusion
estimation accuracy. As such, an appropriate selection of Σk

is necessary to balance privacy level and fusion estimation
accuracy.

To quantified privacy level, we adopt the commonly used
(ϵ, δ)-differential privacy (see, e.g., [3], [16]–[21], [23]). Let
(Ω,F , P ) be a probability space. Then, we first introduce
the notion of differential privacy, equipped with a symmetric
binary adjacency relation, denoted Adj(dk−1,d

′
k−1), on the

space Rnd .
Definition 2 (Adjacency relation): Let ϵ0 be a positive real

number. Then, Adj(dk−1,d
′
k−1) ⇔ ∥dk−1 − d′

k−1∥2 ≤ ϵ0.
Note that the adjacency relation defined in Definition 2 is

standard for the Gaussian mechanism with continuous-valued
inputs (see, e.g., [3], [22], [23]).

Definition 3 (Differential privacy, [23]): Let (RMnx ,M)
be a measurable space, and ϵ, δ ≥ 0. A mechanism Mq :
Rnd × Ω → RMnx is (ϵ, δ)-differentially private if for all
dk−1,d

′
k−1 ∈ Rnd such that Adj(dk−1,d

′
k−1), there is

P (Mq(dk−1) ∈ S) ≤ eϵP (Mq(d
′
k−1) ∈ S) + δ, ∀S ∈ M.
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Remark 6: The above inequality is standard in defining
the differential privacy. Since it holds for any dk−1,d

′
k−1 ∈

Rnd satisfying Adj(dk−1,d
′
k−1), we can exchange Mq(dk−1)

with Mq(d
′
k−1) and obtain P (Mq(d

′
k−1) ∈ S) ≤

eϵP (Mq(dk−1) ∈ S) + δ. Subtracting the two inequali-
ties yields 1 − eϵ − δ ≤ (1 − eϵ)P (Mq(d

′
k−1) ∈ S) −

δ ≤ P (Mq(d
′
k−1) ∈ S) − P (Mq(dk−1) ∈ S) ≤ (eϵ −

1)P (Mq(dk−1) + δ ≤ eϵ − 1+ δ, and hence |P (Mq(d
′
k−1) ∈

S) − P (Mq(dk−1) ∈ S)| ≤ eϵ − 1 + δ. Since eϵ ≈ 1 + ϵ for
small ϵ > 0, it means that for sufficiently small ϵ, δ > 0, the
eavesdropper cannot distinguish dk−1 from d′

k−1 based on the
observation Mq . This means that dk−1 is protected.

Particularly in our problem, the mechanism is given as

Mq(dk−1) = x̂k|k + ωk. (6)

We next present what inequality condition does
Σ1,k,Σ2,k, . . . ,ΣM,k need to satisfy such that the mechanism
(6) is (ϵ, δ)-differentially private. To this end, we first provide
the following two lemmas.

Lemma 1: The analytic expression of x̂k|k with respect to
dk−1 is given as x̂k|k = q(dk−1) + νk, where q(dk−1) =
Mkdk−1+ ck with Mk = 1⊗Bk−1 and ck being a constant,
and νk is a zero-mean Gaussian noise with covariance matrix
satisfying Cov(νk) ≥ Υk, where Υk = ḠkCkQk−1C

T
k Ḡ

T
k ,

Ḡk = block-diag(G1,k,G2,k, . . . ,GM,k) and Ck =
[CT

1,k,C
T
2,k, . . . ,C

T
M,k]

T.
Proof. Due to space limitation, we leave the proof to the
extended version [31] of this paper (arXiv:2512.22914). ■

Remark 7: From Lemma 1 and (6), we obtain Mq(dk−1) =
q(dk−1) + νk + ωk, where q(dk−1) is the so-called query
function. This indicates that the differential privacy level is
collectively determined by both noise terms, νk and ωk.

Lemma 2: Let µk = q(dk−1) − q(d′
k−1) and Σ̄k =

Cov(νk) + Cov(ωk). Then, we have

P (Mq(dk−1) ∈ S) ≤ eϵP (Mq(d
′
k−1) ∈ S)

+Q
(

ϵ

∥µk∥Σ̄−1
k

−
∥µk∥Σ̄−1

k

2

)
,

where Q(x) = 1√
2π

∫∞
x

exp{− z2

2 }dz is the Q-function.
Proof. Due to space limitation, we leave the proof to the
extended version [31] of this paper (arXiv:2512.22914). ■

Lemma 2 indicates that the sufficient condition to ensure
(ϵ, δ)-differential privacy of the mechanism (6) is

sup
dk−1,d′

k−1:Adj(dk−1,d′
k−1)

Q
(

ϵ

∥µk∥Σ̄−1
k

−
∥µk∥Σ̄−1

k

2

)
≤ δ.

Unfortunately, the above inequality cannot be directly em-
ployed because the analytic computation of Σ̄k is infea-
sible, owing to the unknown correlations among the mea-
surement noises of the local sensors. To address this,
we introduce an analytical lower bound of Σ̄k, denoted
Sk = Υk + block-diag(Σ1,k,Σ2,k, . . . ,ΣM,k). From
Cov(νk) ≥ Υk in Lemma 1, we obtain Sk ≤ Cov(νk) +
block-diag(Σ1,k,Σ2,k, . . . ,ΣM,k) = Cov(νk) + Cov(ωk) =
Σ̄k. Then, we have the following theorem.

Theorem 1: Consider the mechanism in (6). Suppose that
the injected noise covariances {Σi,k}Mi=1 are chosen such that

sup
dk−1,d′

k−1:Adj(dk−1,d′
k−1)

Q
(

ϵ

∥µk∥S−1
k

−
∥µk∥S−1

k

2

)
≤ δ.

Then, the mechanism Mq(dk−1) is (ϵ, δ)-differentially private.
Proof. Due to space limitation, we leave the proof to the
extended version [31] of this paper (arXiv:2512.22914). ■

Remark 8: For any pair of dk−1 and d′
k−1 satisfying

Adj(dk−1,d
′
k−1), Theorem 1 requires that the difference

µk = q(dk−1)−q(d′
k−1) satisfies the inequality: ϵ/∥µk∥S−1

k
−

∥µk∥S−1
k
/2 ≥ Q−1(δ). A smaller Mahalanobis distance

∥µk∥S−1
k

indicates that q(dk−1) and q(d′
k−1) are statisti-

cally closer and thus harder to distinguish, thereby enhancing
privacy. Thus, one may reduce ∥µk∥S−1

k
by increasing the

covariance of the injected noise. This enlarges Sk, thereby re-
ducing ∥µk∥S−1

k
since S−1

k becomes smaller. Observe that the
function f(x) = ϵ/x−x/2 is decreasing for x > 0. Therefore,
reducing ∥µk∥S−1

k
increases the value of f(∥µk∥S−1

k
), making

Theorem 1’s condition easier to meet. Thus, a greater noise
covariance leads to a higher (ϵ, δ)-differential privacy level.

Based on Theorem 1, we construct the following constrained
minimization problem, aiming at minimizing the sum of MSEs
of the local estimates while ensuring (ϵ, δ)-differential privacy:

min

M∑
i=1

tr(Σi,k)

s.t. sup
dk−1,d′

k−1:Adj(dk−1,d′
k−1)

Q
(

ϵ

∥µk∥S−1
k

−
∥µk∥S−1

k

2

)
≤ δ

block-diag(Σ1,k,Σ2,k, . . . ,ΣM,k) ≥ 0.
(7)

Remark 9: The first constraint of (7) is a joint constraint
on the entire block-diagonal noise covariance matrix Σk =
block-diag(Σ1,k, ...,ΣM,k). The challenge, therefore, is to
optimally allocate the privacy budget (in the form of noise
covariance) among the different local sensors. Additionally, the
optimization variables Σ1,k,Σ2,k, . . . ,ΣM,k are not restricted
to being isotropic (i.e., Σi,k = σiInx

, i = 1, 2, . . . ,M ). This
is more general than most of the existing works where the
parameters to be determined are scalars (see, e.g., [3], [17],
[18], [20], [23]). However, this increased generality also results
in a greater complexity for the minimization problem.

Remark 10: It follows from Q(ϵ/∥µk∥Σ̄−1
k
−∥µk∥Σ̄−1

k
/2) ≤

Q(ϵ/∥µk∥S−1
k

− ∥µk∥S−1
k
/2) that the use of Sk relaxes the

privacy constraint in (7), but comes at the cost of increased
noise injection. This leads to a larger state estimation covari-
ance, demonstrating a direct trade-off between privacy level
and estimation accuracy.

On the one hand, it is not difficult to verify that the first
constraint is non-convex. Thus, the problem (7) is non-convex
and its analytic solution is hard to obtain. On the other hand,
computational efficiency is critically important in real-time
state estimation. Thus, it is of great significance to develop
an efficient algorithm to solve the problem (7). To this end,
an approach of relaxation is proposed, as presented in the
following theorem.
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Theorem 2 (SDP relaxation for optimal noise design): Let
b =

ϵ20∥Mk∥2
2

−Q−1(δ)+
√

(Q−1(δ))2+2ϵ
. Then, the original problem (7)

can be relaxed to the following SDP problem:

min

M∑
i=1

tr(Σi,k)

s.t. block-diag(Σ1,k,Σ2,k, . . . ,ΣM,k)

+Υk − bIMnx
≥ 0,

block-diag(Σ1,k,Σ2,k, . . . ,ΣM,k) ≥ 0.

(8)

Proof. Due to space limitation, we leave the proof to the
extended version [31] of this paper (arXiv:2512.22914). ■

Remark 11: The SDP relaxation (8) offers a twofold benefit.
First, it is computationally tractable and can be efficiently
solved by standard packages like CVX (see [32]). Second,
and crucially, any feasible solution to (8) also satisfies the
constraints of the original problem (7). This implies that the
(ϵ, δ)-differential privacy of (6) is maintained. Thus, this relax-
ation yields a practical solution method without compromising
the privacy guarantee.

To assess the effectiveness of the SDP relaxation (8), the
following proposition quantifies the relaxation quality by pro-
viding an upper bound on the gap between the SDP relaxation
(8) and the original problem (7).

Proposition 1 (Upper bound on the relaxation gap): Let J∗
orig

and J∗
relax be the minimums of the original problem (7) and the

SDP problem (8), respectively, and S∗
k,orig = Υk+Σ∗

k,orig with
Σ∗

k,orig being the optimal solution of (7). Then, the relaxation
gap is bounded by

J∗
relax − J∗

orig ≤

(
max

(
1,

b

λmin(S∗
k,orig)

)
− 1

)
tr(S∗

k,orig).

Proof. Due to space limitation, we leave the proof to the
extended version [31] of this paper (arXiv:2512.22914). ■

According to Proposition 1, the relaxation gap vanishes if
λmin(S

∗
k,orig) ≥ b (the relaxation is tight); otherwise, its upper

bound monotonically increases with the ratio b/λmin(S
∗
k,orig).

IV. PRIVACY-PRESERVING DISTRIBUTED FUSION
ESTIMATION

At the fusion center side, after receiving all the noisy state
estimates and error covariance matrices, the fusion estimate,
denoted by x̂cen

k|k , and the corresponding error covariance
matrix, denoted by Pk|k, are derived by utilizing the approach
of covariance intersection [30]:

P−1
k|kx̂

cen
k|k =

M∑
i=1

wiP̄
−1
i,k|kx̄i,k|k, (9)

P−1
k|k =

M∑
i=1

wiP̄
−1
i,k|k, (10)

where x̄i,k|k = x̂i,k|k+ωi,k, ωi,k ∼ N (0,Σ∗
i,k), and P̄i,k|k =

Pi,k|k +Σ∗
i,k.

The proposed differentially private distributed fusion esti-
mation algorithm is summarized in Algorithm 1. It should be
noted in Algorithm 1 that the local sensors uses the optimal

local state estimates given by (4) for the next prediction step.
The noisy local estimates are adopted at the fusion center only.
Besides, the process that the fusion center sends {Σ∗

i,k}Mi=1 to
the local sensors will not cause a privacy leakage since the full
eavesdropper cannot obtain the sampled values of the injected
noises from {Σ∗

i,k}Mi=1.

Algorithm 1 Differentially private distributed fusion estima-
tion algorithm

Input: x̂i,k−1|k−1, Pi,k−1|k−1

1: for i = 1, 2, . . . ,M do
2: Node i calculates x̂i,k|k−1 and Pi,k|k−1 using (2) and

(3).
3: Node i calculates x̂i,k|k and Pi,k|k using (4) and (5).
4: end for
5: Fusion center solves (8) to get

Σ∗
k = block-diag(Σ∗

1,k,Σ
∗
2,k, . . . ,Σ

∗
M,k),

and sends Σ∗
i,k to Node i.

6: for i = 1, 2, . . . ,M do
7: Node i generates ωi,k ∼ N (0,Σ∗

i,k).
8: Node i calculates x̄i,k|k = x̂i,k|k + ωi,k.
9: Node i calculates P̄i,k|k = Pi,k|k +Σ∗

i,k.
10: Node i sends x̄i,k|k and P̄i,k|k to the fusion center.
11: end for
12: Fusion center calculates x̂cen

k|k and Pk|k using (9) and (10).
Output: x̂cen

k|k , Pk|k

Remark 12: The covariance intersection fusion yields a
consistent estimate, that is, the fused covariance matrix Pk|k
satisfies E[(x̂cen

k|k − xk)(x̂
cen
k|k − xk)

T] ≤ Pk|k, conservatively
bounding the true error to prevent over-confidence and filter
divergence. This holds provided that the covariance matrix
from each local sensor upper-bounds its true error [30]. In
Algorithm 1, the fusion center receives the noisy state estimate
x̄i,k|k = x̂i,k|k + ωi,k, whose true error covariance matrix is
E
[
(x̄i,k|k − xk)(x̄i,k|k − xk)

T
]
= Pi,k|k + Σ∗

i,k = P̄i,k|k.
Therefore, although Pi,k|k contains no information about
dk−1 (Remark 5), transmitting the augmented covariance
matrix P̄i,k|k is required for consistency.

The following proposition quantifies the estimation accuracy
loss incurred by privacy protection. The loss, defined as
∆Pk|k = Pk|k − Pumv

k|k ≥ 0 at time step k, is derived by
comparing the error covariance matrix of Algorithm 1 with
that of the non-private, unbiased minimum-variance estimator.

Proposition 2 (Estimation accuracy loss): The estimation
accuracy loss of Algorithm 1 at time step k is given as:

∆Pk|k = Pk|k

(
M∑
i=1

wiP
−1
i,k|kΣ

∗
i,k(Pi,k|k +Σ∗

i,k)
−1

)
Pumv

k|k .

Proof. Due to space limitation, we leave the proof to the
extended version [31] of this paper (arXiv:2512.22914). ■

Remark 13: Based on Proposition 2, we have the fol-
lowing observations: i) Under small injected noise (i.e.,
∥Σ∗

i,k∥ is small relative to ∥Pi,k|k∥), the inverse term ad-
mits the approximation (Pi,k|k + Σ∗

i,k)
−1 ≈ P−1

i,k|k −

5



P−1
i,k|kΣ

∗
i,kP

−1
i,k|k, and thus Ppriv

k|k ≈ Pumv
k|k . Consequently, the

estimation accuracy loss can be approximated as ∆Pk|k ≈
Pumv

k|k

(∑M
i=1 wiP

−1
i,k|kΣ

∗
i,kP

−1
i,k|k

)
Pumv

k|k , which indicates that
∆Pk|k is approximately linear in Σ∗

k. ii) The result also
reveals a trade-off between privacy level and estimation accu-
racy: a higher privacy level implies a larger noise covariance
Σ∗

k, which enlarges the estimation accuracy loss ∆Pk|k.
The information transmission in Algorithm 1 is illustrated

in Fig. 2. We can see from Fig. 2 that the local sensors send
their state estimates {x̄i,k|k}Mi=1 and error covariance matrices
{P̄i,k|k}Mi=1 to the fusion center, but the fusion center does
not send the fusion estimate x̂cen

k|k and error covariance matrix
Pk|k back to the local sensors.

Fusion center

Sensor 1 Sensor M

*
1,kΣ

1, |k kx , |M k kx
*

,M kΣ

Sensor i 

*
,i kΣ

, |i k kx

1, |k kP

, |i k kP

, |M k kP

... ...

Fig. 2: Information transmission in Algorithm 1

Accuracy is crucial in distributed fusion estimation as it
directly improves the reliability of decision-making in various
applications. To enhance the fusion estimation accuracy of
Algorithm 1 while ensuring the same (ϵ, δ)-differential privacy,
we introduce a feedback mechanism. Specifically, after imple-
menting Algorithm 1, the fusion center further sends the fusion
estimate x̂cen

k|k and error covariance matrix Pk|k back to all the
local sensors. Then, each node i updates its local estimate
and error covariance matrix to x̂update

i,k|k and Pupdate
i,k|k , by fusing

its local estimate x̂i,k|k and error covariance matrix Pi,k|k
with the fusion estimate x̂cen

k|k and error covariance matrix
Pk|k. The differentially private distributed fusion estimation
algorithm with enhanced accuracy via a feedback mechanism
is summarized in Algorithm 2.

Remark 14: By implementing Step 4 and Step 5 in Al-
gorithm 2, each node enhances its local estimation accuracy
at time step k. Furthermore, the fusion estimation accuracy
for the next time step k + 1 will be enhanced. Despite
an enhanced accuracy, there is always a loss due to the
noise injection strategy, which reflects the trade-off between
differential privacy level and fusion estimation accuracy.

Fusion center

Sensor 1 Sensor M

*
1,kΣ

1, |k kx , |M k kx
*

,M kΣ

Sensor i 

*
,i kΣ

, |i k kx

1, |k kP

, |i k kP

, |M k kP

... ...

 cen
|k kx


|k kP

Fig. 3: Information transmission in Algorithm 2

The information transmission in Algorithm 2 is illustrated in
Fig. 3. We can see from Figs. 2 and 3 that Algorithm 2 needs to
transmit x̂cen

k|k and Pk|k, but Algorithm 1 does not. This implies
that the full eavesdropper can acquire more data in Algorithm

Algorithm 2 Differentially private distributed fusion esti-
mation algorithm with enhanced accuracy via a feedback
mechanism

Input: x̂update
i,k−1|k−1, Pupdate

i,k−1|k−1

1: Implement Algorithm 1 to get x̂cen,(A2)
k|k and P

(A2)
k|k at the

fusion center, where (x̂i,k−1|k−1,Pi,k−1|k−1) is replaced
by (x̂update

i,k−1|k−1,P
update
i,k−1|k−1).

2: Fusion center sends x̂
cen,(A2)
k|k and P

(A2)
k|k to all the local

sensors.
3: for i = 1, 2, . . . ,M do
4: Node i updates its local estimate and error covariance

matrix using the approach of covariance intersection:(
Pupdate

i,k|k
)−1

x̂update
i,k|k = v

(i)
1

(
P

(A2)
i,k|k

)−1
x̂
(A2)
i,k|k

+ v
(i)
2

(
P

(A2)
k|k

)−1
x̂
cen,(A2)
k|k ,

(
Pupdate

i,k|k
)−1

= v
(i)
1

(
P

(A2)
i,k|k

)−1
+ v

(i)
2

(
P

(A2)
k|k

)−1
,

where the weights v
(i)
1 , v(i)2 are chosen as follows:

• If P(A2)
k|k ≤ P

(A2)
i,k|k, set v(i)1 = 0, v

(i)
2 = 1;

• Otherwise, set v(i)1 = 1, v
(i)
2 = 0.

5: end for
Output: x̂

cen,(A2)
k|k , P(A2)

k|k

2. Then, a natural question is whether Algorithm 2 can ensure
the same (ϵ, δ)-differential privacy while achieving enhanced
estimation accuracy over Algorithm 1? The following two
propositions give the answer.

Proposition 3: Algorithm 2 ensures the same (ϵ, δ)-
differential privacy as Algorithm 1.
Proof. Due to space limitation, we leave the proof to the
extended version [31] of this paper (arXiv:2512.22914). ■

Proposition 4: Algorithm 2 enhances the fusion and lo-
cal estimation accuracy of Algorithm 1, i.e., P

(A2)
k|k ≤

Pk|k, Pupdate
i,k|k ≤ Pi,k|k, for all k.

Proof. Due to space limitation, we leave the proof to the
extended version [31] of this paper (arXiv:2512.22914). ■

Remark 15: Propositions 3 and 4 indicate that Algorithm 2
enhances the fusion estimation accuracy of Algorithm 1 while
ensuring the same (ϵ, δ)-differential privacy. However, more
computational cost is needed in Algorithm 2. Specifically, the
computational complexity of Algorithm 2 is O(Mn3

x) more
than that of Algorithm 1. Overall, Algorithm 1 prefers to a
scenario with low-complexity requirements, while Algorithm
2 prefers to a scenario with high-accuracy requirements.

Remark 16: Compared to encryption-based methods (see,
e.g., [2], [3], [15]), the proposed algorithms are more effi-
cient. Specifically, the computational cost is lower because it
primarily involves solving an SDP, which can be performed
efficiently using interior-point methods (see, e.g., [33]). More-
over, the communication overhead is lower because only noisy
estimates and their covariance matrices should be transmitted.
Beyond efficiency, a further distinction lies in the privacy guar-
antee: while encryption provides a binary guarantee reliant on
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computational assumptions, our differential privacy framework
ensures a probabilistic guarantee.

Remark 17: In implementing the proposed algorithms, two
practical issues are addressed as follows: i) numerical stability,
which is ensured via square-root filtering techniques (see, e.g.,
[34]); and ii) potential model uncertainty, which is ensured via
robust filtering techniques (see, e.g., [34]).

V. EXAMPLE

Consider the dynamic model in [1] as follows:

xk+1 = Akxk +Bkdk +wk,

where

Ak =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 ,Bk =


1 0
0 0
0 1
0 0

 ,dk =

[
5 cos k
5 cos k

]
,

and wk ∼ N (0,Qk) with Qk = diag([1, 0.1, 1, 0.1]T).
The initial state is generated from N (x̂0,P0) with x̂0 =
[0, 5, 0, 5]T and P0 = diag([10, 10, 10, 10]T). The distributed
multi-sensor network system consists of two local sensors with
their measurement model being

yi,k = Ci,kxk + vi,k, i = 1, 2,

where C1,k =

[
1 0 0 0
0 0 1 0

]
, C2,k = I4, and vi,k ∼

N (0,Ri) with R1 = 0.1I2 and R2 = 20I4.
Set ϵ0 = 0.1, ϵ = δ = 10−3 for differential privacy level

(see Definition 3). In the covariance intersection fusion (9)
and (10), uniform weights (w1 = w2 = 0.5) are adopted for
simplicity. To demonstrate the effectiveness of the proposed
two algorithms, the MSEs of local and fusion estimates over
50 time steps and 50 Monte Carlo runs for Algorithm 1
(legends labeled A1) and Algorithm 2 (legends labeled A2)
are depicted in Fig. 4. We have the following observations
and explanations:

1) Under the same differential privacy level, the MSEs of
local and fusion estimates in Algorithm 2 are smaller than
those in Algorithm 1 consistently. Intuitively, for the same
line shape, the red lines are all below the black lines. This
demonstrates that Algorithm 2 does enhance the local and
fusion estimation accuracy of Algorithm 1.

2) For Algorithm 1, the MSEs of fusion estimates are
smaller than those of local estimates consistently. Intuitively,
the black solid line is below the other two black marked lines
consistently. This is due to the effectiveness of the covariance
intersection approach adopted at the fusion center.

3) For Algorithm 2, however, the MSE of fusion estimate
is smaller than that of Sensor 2 and larger than that of
Sensor 1 at each time step. Intuitively, the red solid line is
between the other two red marked lines. This is because the
covariance intersection approach is inherently conservative to
ensure consistency (Remark 12). As a result, Sensor 2 may not
trust the feedback from the fusion center, leading to a lower
local estimation accuracy compared with the fusion center.

Table I lists the averaged MSEs for different weight se-
lections in covariance intersection. The results show that

Algorithm 2 outperforms Algorithm 1 across all weighting
schemes. Moreover, the MSEs of both algorithms decrease
as the weight w1 increases. This trend is consistent with
the higher measurement accuracy of Node 1 compared to
Node 2, as reflected by the smaller order of magnitude of
its measurement noise covariance R1.
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Fig. 4: MSEs of local and fusion estimates for Algorithm 1
and Algorithm 2.

TABLE I: Comparison of averaged MSEs under different
weight selections for covariance intersection.

Algorithm

MSE (w1, w2)
(0.4, 0.6) (0.5, 0.5) (0.6, 0.4)

Algorithm 1 34.36 26.12 24.67
Algorithm 2 22.43 16.86 11.85

To show the trade-off between differential privacy level and
fusion estimation accuracy, the MSEs of fusion estimates for
different parameter settings are presented in Figs. 5 and 6.

0 5 10 15 20 25 30 35 40 45 50

time step

25

30

35

40

45

50

55

60

M
S

E
 o

f 
s
ta

te
 e

s
ti
m

a
te

Fusion center(A1)

Fusion center(A2)

(a) ϵ0 = 0.5, ϵ = δ = 10−3.
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(b) ϵ0 = 1, ϵ = δ = 10−3.

Fig. 5: MSEs of fusion estimates for different ϵ0.

For different ϵ0, the MSEs of fusion estimates are com-
pared in Fig. 5. Specifically, from Fig. 5(a) to Fig. 5(b),
the ϵ0 becomes larger, and thus the differential privacy level
gets higher. Nevertheless, the fusion estimation accuracy gets
lower, as confirmed in Fig. 5(b). For different ϵ, δ, the MSEs
of fusion estimates are compared in Fig. 6. Specifically, from
Fig. 6(a) to Fig. 6(b), the ϵ and δ becomes larger, and thus
the differential privacy level gets lower. As expected, the
fusion estimation accuracy in Fig. 6(b) is superior to that in
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(a) ϵ0 = 0.1, ϵ = δ = 10−6.
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(b) ϵ0 = 0.1, ϵ = δ = 0.1.

Fig. 6: MSEs of fusion estimates for different ϵ, δ.

Fig. 6(a). Overall, Figs. 5 and 6 illustrate the trade-off between
differential privacy level and fusion estimation accuracy.

VI. CONCLUSION

In this paper, we have achieved distributed fusion estimation
while protecting the exogenous inputs against full eavesdrop-
ping. By solving a constrained minimization problem, the
(ϵ, δ)-differential privacy is ensured and the sum of MSEs of
local estimates is minimized simultaneously. To deal with the
non-convexity of the minimization problem, we have relaxed
it to the SDP problem and then solve it efficiently, making
valuable sense in real-time state estimation. Consequently,
we have developed two differentially private distributed fu-
sion estimation algorithms applicable to different scenarios:
One prefers to low-complexity requirements, while the other
prefers to high-accuracy requirements. Particularly, the second
algorithm with the feedback mechanism enhances the fusion
estimation accuracy of the first algorithm while ensuring
the same (ϵ, δ)-differential privacy, despite sacrificing some
acceptable computational complexity. Given that protecting a
sequence of inputs is more general than protecting only the
latest one, a promising future direction is to generalize our
approach to protect the latest k1 inputs (k1 ≥ 2).
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